
  

Performance Enhancement Defect Tolerance in the Cell 
Matrix Architecture 

 
C. R. Saha, S. J. Bellis , A. Mathewson and E. M. Popovici 

 
 
 

       Abstract- This research concentrates on the area of fault 
tolerant circuit implementation in a field programmable type 
architecture. In particular, an architecture called the Cell Matrix, 
presented as a fault tolerant alternative to field programmable gate 
arrays using their Supercell approach, is studied. Architectural 
constraints to implement fault tolerant circuit  design in this 
architecture are discussed. Some modifications of its basic 
structure, such as the integration of circuitry for error correction 
and scan path, to enhance fault tolerant circuits design are 
introduced and are compared to the Supercell approach. 
Keywords: Cell Matrix, Supercell, fault tolerance, FPGAs, 
Hamming code, Scan path. 

 
 

I. Introduction 

Fault tolerance plays an important role in modern 
digital systems. In recent years research into fault tolerant 
systems has also been driven by the rapidly increasing use 
of computer based systems in railway and traffic control, 
aircraft flight, hospital patient monitors, telecommunication 
and others where failure can cost lives, money or both. 
State-of-the-art programmable devices such as Field 
Programmable gate Arrays (FPGAs) offer many new 
opportunities for the implementation of digital circuits in 
the computing and digital signal processing areas. The 
reconfigurability of these computing architectures is an 
exciting and promising area for the future research into 
fault tolerance. Over the past decades, a great deal of 
research has been done in this area but little commercial 
support for this technology has been available. With this 
deficit and future predictions for the requirement of a 
nanotechnological, fault tolerant and reconfigurable 
architecture in mind, the Cell Matrix Corporation have 
developed the Cell Matrix Architecture [1]. The 
architecture consists of a simple regular two-dimensional 
collection of cells. Fig. 1 represents a simple four-sided 
cel1. It has four data and four control inputs/outputs 
designated north, south, east and west. Each cell consists of 
a small amount of logic and a local memory that is used as 
a look up table (LUT).  

                         
Fig. 1. Cell Block.         
 
Each cell operates independently in one of two modes at 
any time: either data/normal operational mode (D-mode) or 
configuration/control mode (C-mode). The memory of each 
cell specifies the output behaviour in response to every 
possible combination of input values. If all control(C) 
inputs are zero, the cell is said to be in D (Data-) mode 
otherwise it operates in C-mode. When a cell is in D mode, 
it is basically a simple combinatorial device whose input to 
output mapping is specified by the content of its LUT. In 
C-mode a cell can be read and written synchronously upon 
a global clock signal. Thus in C-mode, a cell’s memory can 
be examined and modified.  
      In the architecture there are lots of repeated unit cell 
blocks and each cell is connected to its  neighbour and 
formed a large matrix. If any cell is faulty, then it is 
possible to bypass the faulty cell using another routing path  
through the architecture or that faulty cell can be replaced 
by a spare or adjacent cell. However, it is necessary first to 
identify the faulty cell from the outside of the matrix. If any 
fault occurs in the circuit then observability is required to 
check the faulty state and a test sequence is required to 
observe the final state of the circuit. To investigate the 
architecture in software, VHDL [2], Mentor Graphic [3] 
and QHSIM simulators were used. This paper presents an 
analyses of fault tolerance in the architecture and suggests 
some modifications of its basic structure to enhance fault 
tolerant circuit design such as using a Scan Path approach 
and Hamming Code error correction. 

 
II. Redundancy based Fault Tolerance 

        One way to start consideration of a fault tolerant 
approach with the architecture is redundancy. Using a 
redundancy approach, each cell would have a number of 
associated extra cells for rerouting and reassignment of that 
cell’s function in case of failure. The number of extra cells 
needed for designing redundancy based fault tolerant 

C. R. Saha, S. Bellis and A. Mathewson are with National 
Microelectronic Research Center, Lee Malting, ProspectRow, and 
Cork, Ireland. E-mail: chitta@nmrc.ie 

E. Popovici is with the Department of Microelectronic 
Engineering, University College Cork, Cork, Ireland. E-mail: 
e.popovici@ucc.ie  



  

circuits such as adders, multipliers in the architecture were 
investigated [4]. This concluded that fault tolerant circuit 
design in the architecture is difficult to achieve using 
redundancy because the architecture has limited and very 
rigid communication. If data is sent to any inner cell of a 
large matrix through a particular row/column, then it is not 
possible to send data in any other cell in that particular 
row/column through the same direction in that particular 
cell. Therefore extra cells would be required to reroute 
wires. Complex software is needed to program a fault 
tolerant circuit without modification of the basic structure 
of cell because there is no direct way to access internal 
cells from the outside of the matrix and no direct 
communication between non adjacent cells. The 
architecture could be modified with additional hardware for 
fault tolerance. Vertical and horizontal scan path 
techniques plus Hamming code error correction and error 
detection circuit designs could be incorporated into a 
modified architecture. This integration is explained in the 
following sections. 
 

III Error-correcting Codes 

       In order to provide automatic fault detection, location 
and masking, error-correcting codes are used. One of the 
most widely used is Hamming code [5]. Hamming codes 
are used in many applications where errors are common 
including DRAM memory chips and satellite 
communication hardware. Hamming code can be used as 
single error detection and correcting codes (SED-SEC) and 
single error correction and double error detecting codes 
(SEC-DED). Russo and Meyer [6] also proposed the single 
fault tolerant sequential circuit implementation, using 
error-correcting codes. The basic idea of coding is to add 
check bits to information bits/data bits so that errors can be 
detected or the original information bits can be 
reconstructed if errors occur. The process of adding check 
bits to the data bits is called encoding. The error detecting 
and correcting capability of a code can be defined in terms 
of the Hamming distance of a code. The distance between 
two words is just the number of places in which they differ. 
The relationship between the Hamming distance of a code 
and its error detecting and correcting capabilities must 
follow this mathematical formula [7]: 

W = C + D + 1 with D = C, 
Where W = Hamming distance of a code, D = Number of 
bit errors which can be detected, C = Number of bit errors 
which can be corrected to obtain a correct code. So, to 
detect and correct single bit error, Hamming code-3 is 
needed and for double error detection and single error 
correction distance 4 Hamming code is needed. 
 

A. Single Bit Error Correction 

       It is possible to correct a single bit error in cell 
memory by using Hamming code. Fig. 2 shows how the 
Hamming code circuitry could be incorporated into the 

basic cell of the architecture. To correct a single bit error in 
cell memory using Hamming code, the XOR gates and a 
decoder circuit will have to be added in to the cell 
structure. Since each cell has four data outputs, three parity 
check bits are needed to apply the Hamming code method. 
During the read operation a typical code word will be 
DNoDSoDWoP3DEoP2P1. From this code word, syndrome 
bits could be generated and any value of syndrome bits 
apart from zero indicates the location of the particular 
faulty output. A decoder could be used to correct the faulty 
output through an XOR gate. The parity check bits would 
be generated from a workstation which is under software 
control. The downloaded data (PC) and control signals 
(CC) are stored in an extended Cell Matrix memory and 
these cells include the syndrome bit generator circuitry and 
a decoder circuit as shown in Fig. 2. 
 

 
 
Fig.2. Integration of Hamming error correction circuitry in the 
basic cell. 
 
 
 
 

Download
Software

Parity
Generator

Dn
Ds
Dw
De

PC
bitstream

CC

Cell Matrix Array

Cells include 
syndrome and 
data correction

 

 

 

P1

P2

Dn

P3

Ds

Dw

De

Dn

Ds

Dw

De

Ctrl

Inputs
DnDsDwDe

Outputs
P1P2DnP3DsDwDe

......

......

......

......

......

......

......

...........

...........

...........

...........

...........

...........

...........

3 
to

 8
D

ec
od

er

S1

S2

S3

Two/more
Errors

LUT
CC PC

Download
Software

Parity
Generator

Dn
Ds
Dw
De

PC
bitstream

CC

Cell Matrix Array

Cells include 
syndrome and 
data correction

  

  

  

P1

P2

Dn

P3

Ds

Dw

De

Dn

Ds

Dw

De

Ctrl

Inputs
DnDsDwDe

Outputs
P1P2DnP3DsDwDe

......

......

......

......

......

......

......

...........

...........

...........

...........

...........

...........

...........

3 
to

 8
D

ec
od

er

S1

S2

S3

Two/more
Errors

LUT
CC PC



  

 
IV Scan Path Design Approach 

       In scan path design techniques the circuit operates in 
two modes, normal mode and test mode [8]. During normal 
operation, each cell’s response depends on the output of its 
adjacent cells. In the test mode, all flip-flops in the circuit 
are connected in a chain to behave as a shift register. This 
shift register allows input test vectors to be loaded into any 
cell of the circuit. The test results from the output of the 
circuit can then be captured and shifted out for inspection.    
To apply scan path techniques in the architecture, 
additional hardware could be added to the structure. In the  
architecture each cell has four data outputs, so four flip-
flops and eight two input multiplexers will be needed for 
each cell in the scan path chain.  
 

Scan in / DWi = a

ModeFF = 1
CLK

Cell11

FF

0
1

0
1

Cell12

FF

0
1

0
1

Cell13

FF

0
1

0
1

ModeDWo = 1

Scan in / DWi = a

ModeFF = 1
CLK

Cell11

FF

0
1

0
1

Cell11

FFFF

0
1

0
1

Cell12

FF

0
1

0
1

Cell12

FFFF

0
1

0
1

Cell13

FF

0
1

0
1

Cell13

FFFF

0
1

0
1

ModeDWo = 1

 
Fig.3(a). Set up to load test data into scanpath 
 Scan in /  DWi = c 

ModeFF = 1 
CLK 

Cell11 

FF 

0 
1 

0 
1 

Cell12 

FF 

0 
1 

0 
1 

Cell13 

FF 

0 
1 

0 
1 

ModeDWo = 1 
b a 

a b bo ao co Scan in /  DWi = c 

ModeFF = 1 
CLK 

Cell11 

FF 

0 
1 

0 
1 

Cell12 

FF 

0 
1 

0 
1 

Cell13 

FF 

0 
1 

0 
1 

ModeDWo = 1 

Scan in /  DWi = c 

ModeFF = 1 
CLK 

Cell11 

FF 

0 
1 

0 
1 

Cell11 

FF FF 

0 
1 

0 
1 

Cell12 

FF 

0 
1 

0 
1 

Cell12 

FF FF 

0 
1 

0 
1 

Cell13 

FF 

0 
1 

0 
1 

Cell13 

FF FF 

0 
1 

0 
1 

ModeDWo = 1 
b a 

a b bo ao co 

Fig.3(b). Test Mode of scan path after two clocks 

Scan in / DWi = c

ModeFF= 0
CLK

Cell11

FF

0
1

0
1

Cell12

FF

0
1

0
1

Cell13

FF

0
1

0
1

ModeDWo= 1

co bo ao

ao

Scan in / DWi = c

ModeFF= 0
CLK

Cell11

FF

0
1

0
1

Cell12

FF

0
1

0
1

Cell13

FF

0
1

0
1

ModeDWo= 1

Scan in / DWi = c

ModeFF= 0
CLK

Cell11

FF

0
1

0
1

Cell11

FFFF

0
1

0
1

Cell12

FF

0
1

0
1

Cell12

FFFF

0
1

0
1

Cell13

FF

0
1

0
1

Cell13

FFFF

0
1

0
1

ModeDWo= 1

co bo ao

ao

 

Fig.3(c). Capture the output test results 

Scan in / DWi

ModeFF = 1
CLK

Cell11

FF

0
1

0
1

Cell12

FF

0
1

0
1

Cell13

FF

0
1

0
1

ModeDWo = 1

co bo

bo
Scan in / DWi

ModeFF = 1
CLK

Cell11

FF

0
1

0
1

Cell12

FF

0
1

0
1

Cell13

FF

0
1

0
1

ModeDWo = 1

Scan in / DWi

ModeFF = 1
CLK

Cell11

FF

0
1

0
1

Cell11

FFFF

0
1

0
1

Cell12

FF

0
1

0
1

Cell12

FFFF

0
1

0
1

Cell13

FF

0
1

0
1

Cell13

FFFF

0
1

0
1

ModeDWo = 1

co bo

bo

Fig.3(d). Pipe out the test results  

Scan in / DWi

ModeFF = DC
CLK

Cell11

FF

0
1

0
1

Cell12

FF

0
1

0
1

Cell13

FF

0
1

0
1

ModeDWo= 0

Scan in / DWi

ModeFF = DC
CLK

Cell11

FF

0
1

0
1

Cell11

FFFF

0
1

0
1

Cell12

FF

0
1

0
1

Cell12

FFFF

0
1

0
1

Cell13

FF

0
1

0
1

Cell13

FFFF

0
1

0
1

ModeDWo= 0

 
Fig.3(e). Normal operational mode after testing 

 

Fig. 3 shows the scan path operation for a DWi to DWo 
row in the architecture. Similarly three other scan paths 
will be needed to complete full scan path in the 
architecture. Fig. 3 (a) shows the initial condition of the 
circuit where the control inputs ModeDWo=1 and 
ModeFF=1 are set such that input test data from the Scan 
in/DWi input can be loaded into the flip -flops. Fig. 3 (b) 
shows the state of the circuit after two clock cycles such 
that test vector c b a is loaded into the flip-flops and onto 
the DWi inputs of each cell. Fig. 3 (c) shows the state of 
the circuit after the resulting cell under test outputs co bo 
ao  have been captured bysetting ModeFF=0 and clocking 
the flip-flops. The test results are retrieved by setting 
ModeFF=1 and shifting out the data as shown in Fig. 3(d). 
Switching ModeDWo=0 restores normal operational mode 
where the DW inputs and ouputs are directly connected via 
the multiplexers (Fig. 3(e)). 
 

      Fig. 4 shows the vertical and horizontal scan path-
testing approaches that could be implemented in the 
architecture. If any cell is faulty, then it is possible to detect 
that particular cell by observing scan out data of the rows 
and columns. Different test vectors will be needed to detect 
particular faults. Scan flip-flops and multiplexer circuitry 
has to be assumed to be fault free for this circuit to work 
correctly.  

        

 

 
Fig.4. Vertical and horizontal scan test of Cell Matrix 
 
Hamming single bit error correction could be applied 
together with this scan vertical/horizontal path technique to 
identify whether a particular cell should be used or not. 
Seven EXOR gates, a syndrome decoder circuit, five flip-
flops and six multiplexers are needed for each cell of the 
architecture to implement Hamming code together with the 
vertical/horizontal scan path technique. then it will 
automatically correct single bit error in each cell’s LUT 
and detect two error bits. 
 



  

 
V. Supercells Approach 

 
The Cell matrix Corporation talked about defect 

tolerance and autonomous fault handling capacity in the 
architecture using a Supercell approach [9], [10]. In this 
approach a small region of the array is first used to 
implement an initial building block called a Supercell. A 
short configuration bit stream is needed to configure a 
small Supercell and this bitstream is supplied externally but 
it is fixed for a given target circuit. The initial Supercell 
must be fault free then it performs a series of tests on 
nearby regions of the matrix looking for defective or faulty 
areas. In the regions that are found to be defect free then 
the initial Supercell configures additional Supercells and 
these seceond generation Supercells. This process 
continues for a fixed number of generations.  
      Durbeck and Macias present Supercells that require 40 
x 40 basic Cell Matrix cells which takes 37000 steps to 
configure [9] and another version composed of 270 x 270 
cells (configuration steps not given) [10].  The advantage 
of the Supercell network lies in the ability of a Supercell to 
configure and test a neighbouring supercell and avoid that 
supercell if necessary. However, on implementing the 
target circuit after testing the resultant functionality 
resembles a two-input, one –output functional block which 
is somewhat similar to that of a single basic cell, thus there 
is large overhead. 
 

VI. Results 
 

     In the basic Cell Matrix architecture, each cell consists 
of approximately 27 logic gates (LG), a 7 bit address RAM 
(128 bits), a D-Flip-flop (DFF) and a 7 bit counter (~7 
more DFFs). In our scan path design, each cell needs 
approximately another 32 LGs for the eight multiplexers 
and four D-FFs. For Hamming Code error correction 
another 23 logic gates for a syndrome decoder circuit and 
five DFFs will be needed plus 8 logic gates and 1 DFF to 
scan out the error indicator bit. Table 1 shows a 
comparison of the resources and test time needed Supercell 
approach, scan path and Hamming code error correction.  
 

TABLE I 
Comparison of Different Test methodologies. 

 
Resources  Approach 
LG RAM  

(bits) 
DFF 

Test Time  
(n = no. of 
cells across) 

Cell Matrix 27 128 8 NA 
Supercell 
(40x40) 

43200 204800 12800 37000n 

Scan Path 32 0 4 2n+1 
Hamming 31 48 6 2n+1 

 
         

From this table, it can be deduced that inclusion of the scan 
path technique and Hamming code error correction 
increases the cell size by about 3 times compared to one 
without fault-tolerance. The test time is significantly much 
lower than the Supercell approach, although extra stages 
are required for the original configuration of the cell RAMs 
before test.  
 

VII.  Conclusion          

        Fault tolerance can be achieved by applying a set of 
analysis and design techniques to create systems with 
dramatically improved dependability. As new technologies 
are developed and new applications arise, new fault 
tolerance approaches are also needed. Cell Matrix 
Corporation have published the advanced Supercell 
approach where a number of cells can be used for self-fault 
detection. However, this approach has large overhead as 
1600 basic cells are required for one Supercell which has 
the target functionality similar to that which could be 
achieved by a single basic cell. Also a large number of 
clock cycles are required for configuring a Supercell 
(37000) and the initial Supercell configuration must come 
from outside the matrix. It has been demonstrated in this 
paper how scan path design techniques and Hamming code 
could be applied to the architecture with some additional 
hardware. These techniques could be used to identify a 
faulty cell and correct single bit error in the LUT’s 
automatically with a significantly smaller overhead in both 
area and time compared to the Supercell approach. In 
conjunction with the redundancy techniques discussed it 
has been shown how a good degree of fault tolerance could 
be incorporated into the Cell Matrix architecture.   
 

References 
 
[1] www.cellmatrix.com 
[2] Stefan Sjoholm and Lennart Lindh, “ VHDL for Designers”, 
Prentice Hall Europe 1997. 
[3] http:/www.mentor.com 
 [4] C. R. Saha, A. Mathewson and S. Bellis “On Fault Tolerance 
in a Reconfigurable Architecture”,Irish Signal and System 
Conference, pp. 272-277, July 2003. 
[5] Paterson, W.W. and E.J. Weldon, “ Error Correcting Codes”, 
MIT, Press 1972. 
[6] Lin. S, “ An Introduction to Error Correcting Codes”, Prentice 
Hall, 1970. 
[7] Davies, D. and J.F. Wakerly “ Synchronization and matching 
in redundant systems”  IEEE Transaction computer, 531-539, 
June 1978. 
[8] H. Fujiwara, “Logic Testing and Design for Testability” MIT 
press 1985. 
[9] L. J.K. Durbeck “ Defect-tolerant, fine grained parallel testing 
of a Cell Matrix”,  Cell Matrix Corporation, 1004 Palmer Drive, 
Blacksburg. www.cellmatrix.com 
[10] N. J. Macias and L. J. K. Durbeck “ Self-Assembling Circuits 
with Autonomous Fault Handling”, Cell Matrix Corporation, 
1004 Palmer Drive, Blacksburg. www.cellmatrix.com 


